Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade.

نویسندگان

  • Tamara Vellosillo
  • Marta Martínez
  • Miguel Angel López
  • Jorge Vicente
  • Tomas Cascón
  • Liam Dolan
  • Mats Hamberg
  • Carmen Castresana
چکیده

Arabidopsis thaliana seedling growth with pure oxylipins resulted in root waving, loss of root apical dominance, and decreased root elongation. 9-Hydroxyoctadecatrienoic acid (9-HOT) was a potent inducer of root waving. Studies with noxy2 (for nonresponding to oxylipins2), a new 9-HOT-insensitive mutant, and coronatine insensitive1-1 (jasmonate-insensitive) revealed at least three signaling cascades mediating the oxylipin actions. Treatment with 9-HOT resulted in a reduction in lateral roots and an increase in stage V primordia. Roots showed strong 9-lipoxygenase (9-LOX) activity, and root primordia expressed 9-LOX genes. These results, along with findings that noxy2 and mutants with defective 9-LOX activity showed increased numbers of lateral roots, suggest that 9-HOT, or a closely related 9-LOX product, is an endogenous modulator of lateral root formation. Histochemical and molecular analyses revealed that 9-HOT activated events common to development and defense responses. A subset of 9-HOT-responding root genes was also induced in leaves after 9-HOT treatment or pathogen inoculation. The results that noxy2 displayed altered root development, enhanced susceptibility to Pseudomonas, and reduced the activation of 9-HOT-responding genes are consistent with mechanistic links among these processes. The nature of the changes detected suggests that oxylipins from the 9-LOX pathway function in cell wall modifications required for lateral root development and pathogen arrest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Screen Identifying Arabidopsis Transcription Factors Involved in the Response to 9-Lipoxygenase-Derived Oxylipins

13-Lipoxygenase-derived oxylipins, such as jasmonates act as potent signaling molecules in plants. Although experimental evidence supports the impact of oxylipins generated by the 9-Lipoxygenase (9-LOX) pathway in root development and pathogen defense, their signaling function in plants remains largely elusive. Based on the root growth inhibiting properties of the 9-LOX-oxylipin 9-HOT (9-hydrox...

متن کامل

Defense activated by 9-lipoxygenase-derived oxylipins requires specific mitochondrial proteins.

9-Lipoxygenases (9-LOXs) initiate fatty acid oxygenation, resulting in the formation of oxylipins activating plant defense against hemibiotrophic pathogenic bacteria. Previous studies using nonresponding to oxylipins (noxy), a series of Arabidopsis (Arabidopsis thaliana) mutants insensitive to the 9-LOX product 9-hydroxy-10,12,15-octadecatrienoic acid (9-HOT), have demonstrated the importance o...

متن کامل

A Chitosan Induced 9-Lipoxygenase in Adelostemma gracillimum Seedlings

Oxylipins generated by the lipoxygenase (LOX) pathway play an important role in plant defense against biotic and abiotic stress. In chitosan-treated Adelostemma gracillimum seedlings, obvious accumulation of 9-LOX-derived oxylipins, namely 9,10,11-trihydroxy-12-octadecenoic acid, was detected. Using degenerate primers, a LOX-specific fragment putatively encoding LOX was obtained by RT-PCR, and ...

متن کامل

Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin.

Plant oxylipins, produced via the lipoxygenase (LOX) pathway, function as signals in defense and development. In fungi, oxylipins are potent regulators of mycotoxin biosynthesis and sporogenesis. Previous studies showed that plant 9-LOX-derived fatty acid hydroperoxides induce conidiation and mycotoxin production. Here, we tested the hypothesis that oxylipins produced by the maize 9-LOX pathway...

متن کامل

An Abscisic Acid-Independent Oxylipin Pathway Controls Stomatal Closure and Immune Defense in Arabidopsis

Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 2007